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1. DESCRIPTION OF A NEW REGIONAL ARRAY
GERESS

GERMAN EXPERIMENTAL SEISMIC SYSTEM

GEC2 (the key station of the array)

Latitude : 48.84511 N

Longitude : 13.70156 E

Elevation : 1132 m
1.1 General

The German Experimental Seismic System (GERESS) array project is a
cooperative research program, jointly undertaken by Southern Methodist
University in Dallas, Texas, and Ruhr-University Bochum, Germany. It is part
of a multi-array network which includes NORESS, ARCESS and FINESA in
Scandinavia. The GERESS array is located in the Bavarian Forest area at the
southeastern part of Germany near the border to Austria and Czechoslovakia
(Figure 1-1). The array consists of 25 stations with vertical-component short-
period (1 Hz) Teledyne Geotech GS-13 type instruments sampled at 40 Hz. In
addition, four of the sites include horizontal component instruments. At the key
station of the array, GEC2, there is a supplemental three-component set of GS-
13’s sampled at 120 Hz (high-frequency element) and a three-component set of
broad-band seismometers (Teledyne Geotech BB-13) sampled at 10 Hz.

The geometry of the array is based on concentric rings spaced at log-
periodic intervals in radius R with 3, 5, 7, and 9 elements in each ring, plus
one in the center (Figure 1-2). The radii of the rings are 200, 430, 925, and
1988 m, respectively, providing an overall aperture of about 4 km. The spac-
ings between stations extend from 161 m to 3925 m. The location of each of
the sites is given in Table 1-1.

The array became fully operational in January 1991. The inner ring of the
array elements started data recording in March 1990 and since then the number
of active channels has increased gradually. Since August 1990, all 25 vertical
short-period channels have been operational. Seismic data from the array instru-
ments are continuously archived on exabyte tapes at the Institute of Geophy-
sics, Ruhr-University Bochum.

In addition to the seismic data, meteorological data from the array center
near GEC2, including temperature and wind velocity, are available almost in
real time. However, at present, these data are not permanently archived.
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1.2 Geology

The Bavarian Forest area, as part of the Bohemian Massive, represents the
largest outcropping crystalline block in Germany. In the array area, there is
outcropping crystalline rock at the mountain top, while in the valleys, soil cov-
ers the basement rock. Most of the instruments are placed directly on granite or
gneiss. However, because of the fixed concentric ring geometry, some stations
had to be placed on weathered crystalline rock.

1.3 Sensitivities

The GS-13 instruments employ velocity transducers. The resulting channel
sensitivity as a function of frequency is plotted in Figure 1-3. It displays a pla-
teau of 26.5 counts/(nm/s) between 1.0 and 16.5 Hz (3 dB points).

The BB-13 instruments are acceleration transducers. The resulting channel
sensitivity as a function of frequency is plotted in Figure 1-4, It displays a pla-
teau of 0.428 counts/(nm/s ) between 0.01 and 4 Hz (3 dB points).

All channels have been adjusted to the same sensitivity by the manufacturer.

1.4 Noise

Background noise spectra from station GEC2 are shown in Figure 1-5 (day)
and Figure 1-6 (night). The spectra are derived from 6 time-windows at day
and night on December 13, 1990. The day spectrum is dominated by a noise
maximum at 4-5 Hz, which is assumed to originate from a saw mill at a dis-
tance of a few kilometers. Apart from this peak the noise spectrum shows a
smooth decay proportional to about £ from 1 Hz to 20 Hz.

1.5 Data Acquisition

Seismometer output signals are digitized with a sampling rate of up to 120
Hz by microprocessor-based equipment (RDAS-200 of Teledyne Geotech) at
each array site. The RDAS-200 automatically accommodates a signal amplitude
over a range of 2% (144 dB). The digital data are encoded into a Teledyne
Geotech internal 24-bit integer format. Data are sent from each array site via
fiber optic communications equipment to the array controller at the HUB near
the key station GEC2. From this site, the data are transmitted to the Institute of
Geophysics in Bochum and to the NORSAR data processing center, Kjeller
Norway, by telephone lines. At the Institute of Geophysics in Bochum, the data
are converted to CSS 2.8 format and are stored continuously on exabyte tapes.

At the same time, the data are available almost in real time for bulletin prepara-
tion.




1.6 Data Processing

Data processing includes detection, phase identification, and location. NOR-
SAR kindly supplied the RONAPP signal analysis software package. The
detection algorithm is based on a conventional short-term average (STA)/ long-
term average (LTA) technique. The STA/LTA detector works on a set of
filtered beams deployed at typical velocities of teleseismic and regional seismic
phases. When a detection is found, data within a certain time window around
the detection time are used for estimates of arrival-time and signal frequency.
The subsequent frequency-wavenumber analysis gives estimates of phase velo-
city, azimuth, and polarization for each detection. The automatic event location
for local and regional events is based on azimuth and S-P travel times. If a
detection is identified by its phase velocity as an S-type wave, and a preceding
P-wave has been detected from about the same direction, an estimate of the
event epicenter is calculated. All these determined values are printed into log
files which can be remotely accessed by scientists via WIN.

Nicolai Gestermann
Hans-Peter Harjes




Table 1.1:

Station
Code

* 3-component short-period
3-component broad-band

Location of the GERESS sites

Longitude

[degree]

42'06.780""
42'14.117"°
42'06.543"°
42'00.122'°
42'27.116""
41754.998""
41745.536""
41’55.882"'
42'21.397"'
42735.704'"
42'05.613"'
41'30.070"°
41’14.983"'
41’44.503"'

42732,558'".

42'52,134""'
42’53.188""
41747,157""
40’54.463""
407 46.7027'
40’50.471""
41'47.914""'
42'57.329""
43'33.916"°
43725.644"'

Latitude
[degree]

3-component high-frequency

vertical short-period

elevation

coordinates :

: bottom of vaults
geographical (UTM) coordinates defined

5012.497"°
5010.597'"
50719.025""
50706.038""
50719.996""
50722.345""
50713.027""
49/57.848""
50704.450"
50728.428""
50742.382""
50732.535""
50706.718""
49746.568""
49'36.372'°
50°07.599""
51'06.512""
51'11.600"°
50’ 47.402"°
50718.871""
49'28,612""
49'09.856"
49715.318"'
49’59.402""
50736.346""

in the meridional zone #33

Elevation
(m]

1022.36
1004.12
1055.55
1011.87
1009.86
1088.73
1053.56
1000.85
971.73
1022.55
1132.46
1070.47
1098.09
1004.20
937.11
980.78
1056.74
994.10
944.70
1034.69
1080.40
1079.35
855.41
933.03
981.79
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Figure 1-1

Geographical location of the GERESS array.
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Figure 1-3 GERESS GS13 velocity response, sampling frequency 40 Hz.




100

10-1 .
—~ 102t .
%
~
a
=
3 104F .
Q
2 10-
s 101 1
2
% 106} .
107
10-8 1 Lol 1 i 1 1t1 L 1 1.l . Lits 1 1 1.1t 111! 1 L1 1 t 1211 1 I .
104 103 102 101 100 10!
Frequency [Hz]
Figure 1-4 GERESS BB13 acceleration response, sampling frequency 10 Hz.




nm**2/Hz

POWER DENSITY

| Illllul | HIHIIL

—
o,
~

IS BT[N 1T WY 1 llllllll_Ll_LUlll

10
-4
10
.5 ",.
10
-6 i
10 T T TTTT1 T T TTTTI T T T T T
10! 10° 101 10?2
FREQUENCY [ Hz ]
Mean value
.......... Standard deviation
Figure 1-5 Short-period vertical component displacement power spectrum of

noise at the key station GEC2 for day time. The solid line
represents an average spectrum of 6 different time-windows.
Each sample was 40 seconds in length and was divided into
11 analysis sections with a length of 6.4 seconds each.




nm*¥*2/Hz

POWER DENSITY

[u—y
o

[u—y
o

H
10 j
.
10 =
-1 -
10 =
.2 .
10 =
10 =
L3
10 =
10 =
10 | T T T TTT T T T TTTT T T T T T
10" 10° 10° 102

FREQUENCY [ Hz ]

- Mecan value

........... . Standard deviation

Figure 1-6 Short-period vertical component displacement power spectrum of
noise at the key station GEC?2 for night time. The solid line
represents an average spectrum of 6 different time-windows.
Each sample was 40 seconds in length and was divided into
11 analysis sections with a length of 6.4 seconds each.

10




2. Signal Transfer Functions and Sensitivities
for GERESS Seismometers

2.1 Introduction

The GERESS regional seismic array is equipped with seismometers of GS13
(short period) and BB13 (broad band) types. They are described in Tele-
dyne’s Operation and Maintenance Manuals M-55400 and M-57760 respec-
tively.

As indicated in fig. 2.1, the complete signal acquisition system consists of
4 stages:

1. the mechanical suspension system,

2. several analog stages including the transducer, amplifiers and, in the
case of BB13, a feedback loop,

3. the analog/digital converter,

4. digital filtering and resampling stages.

If true ground movement is to be restituted from the recorded signals, the
performance of each of these stages must be known precisely.

2.2 Transfer Functions

The analog stages (1. and 2.) can be described in terms of transfer function
H(s) in the s-plane, (s € (), such that

where X(s) is the Laplace-transform of the ground displacement z(t), veloc-
ity v(t) or acceleration a(t) at the location of the seismometer and Y (s) is the

11
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Laplace-transform of the output signal. The one-sided Laplace-transform is

defined as -
L{fW)} = F(s) = [ fp)edt.

Both mechanical and analog electronic systems are governed by general dif-
ferential equations with constant coefficients. Theory (e.g. Doetsch, 1967)!
proves that H(s) is the quotient of two polynomials in this case:

% k
H(S) = A(S) = k=0aks
N ’
B(s) 3 bysk
=0

and since every polynomial of degree M can be factored into M roots over
the complex space (,

M
A)=TI(s=m) , m€C

is an entirely equivalent formulation of the numerator. Roots of the numer-
ator polynomial are called zeroes, those of the denominator polynomial are
called poles. Thus, a transfer function can be given in terms of its poles and

Zeros
M
H (s - zk)
H(s)=Vo- v .
> (s—m)

I=1
The gain factor V; is often added for convenience, but could be included into
the numerator or denominator term if required.

For quick reference, poles and zeroes of GERESS analog channels are
tabulated in appendix C.

Poles and zeroes for a given system can either be calculated from system
parameters such as natural frequency and damping, together with theoretical
assumptions about the nature of the system, or they can be determined
experimentally via RMS-approximation by measuring phase and amplitude
response over a wide range of frequencies with a signal analyzer. The former
method has been used at SMU for the GS13. Assuming that the analog
stages beyond the transducer do not greatly change amplitude nor phase

'Doetsch, Gustav: Anleitung zum praktischen Gebrauch der Laplace-Transformation
und der Z-Transformation. Miinchen, Wien 19673




characteristics apart from uniform amplification, and assuming zero coupling
between the electronic and the mechanical system, the well-known Laplace-
transform of the seismometer-equation is used

s2

ST+ 2wes + i

H(s) =

where G is the generator constant,
A is the effective damping factor = 0.775, and
wo is the free circular frequency = 27 /T = 2n
(free period T = 1 sec)

to find the two zeroes at zero and the two poles at

—/\wo + (.UQ'V/\2—1

D2 =
= —4869 £ :-3.971.

In case of considerable coupling, as with the BB13 feedback loop, the above
formula cannot be used.

By means of an HP-3582 Signal Analyzer Teledyne derived transfer func-
tions with 8 poles and 1 zero for the GS13 and with 10 poles and 4 zeroes for
the BB13 (see figs. 2.2 and 2.3.) In order to compare GS12 transfer functions
from Teledyne and from SMU, the Teledyne function must be subjected to
the following transformations:

(a) add one zero at zero to obtain velocity-proportionality,
(b) multiply each pole and zero value supplied by Teledyne by 27 and

(c) adjust the gain factor according to V = Vreteayne - (27)N M,
where N = # of poles and M = # of zeroes.

Proofs for this procedure can be found in appendices A and B.
To facilitate visual comparison of the different transfer functions, their
amplitudes and phases
amp(s) = | H(s)|
phase(s) = [arg(H(s)) £n-2x]-180/x
were plotted against frequency with s = 27 -4 - v. Fig. 2.4 shows that

Teledyne and SMU transfer functions are generally in good agreement in the
frequency range considered (Nyquist-frequency is 20 Ilz.) The linear plot

14




Figure 2.2: Information from Teledyne on GS13 transfer function
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Figure 2.3: Information from Teledyne on BB13 transfer function
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Figure 2.4: Comparison of measured (Teledyne) and theoretically derived
(SMU) transfer function for GS13
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(fig. 2.5; shows the slight deviation in amplitude. Thus it appears justified
tc use SMU’s conveniently simpler transfer function for the GS13. This is no
longer true for the GS13 high frequency element (60 Hz Nyquist-frequency.)
Both amplitude curves have been normalized to a value of 26.53 counts per
nm/sec at 5 Hz (see below under Sensitivity.)

Fig. 2.6 is a plot of the BB13 transfer function from poles and zeroes
supplied by Teledyne.

2.3 Sensitivities

The total sensitivity of a channel is determined by the generator constant of
the seismometer, the total amplification of the analog system, the conversion
ratio of the A/D-converter and the amplification of any digital filters em-
ployed. Its dimension is digital counts per m/sec for the velocity transducer
GS13 and digital counts per m/sec? for the acceleration transducer BB13. If
ground-displacement amplitude is to be calculated from velocity or acceler-
ation data, one or two zeroes at zero can be added to the transfer function,
respectively, before the analog amplification is calculated. This amounts to
a multiplication of analog amplification by w or w?. The resulting sensitivity
then has the dimension counts per m. Note, however, that this manipulation
does not make the system a displacement transducer (to that end the out-
put signal would have to be integrated) and that the derived displacement
sensitivity is strictly speaking valid for monochromatic signals only.

Within their passbands, the digital filters employed have unit gain (see
below) and therefore need no consideration.

Thus, channel sensitivity is
G-P
LSB’
where G is the generator constant, P is the preamplification factor and LSB

is the least significant bit of the A/D-converter. The 24-bit A/D-converter
has an input range of 40 Volts peak to peak, so its LSB = 2.3841857 nV.

For the GS13, Teledyne adjusted the generator constants to 2000 V/(m/s).
Pre-amplification is 30dB (factor 31.6228). With these values the GS13 total
sensitivity is 26.53 counts per nm/sec in the plateau-region around 5 Hz.

For the BB13 the “generator constant” (i.e. the sensitivity of the seis-
mometer unit including the feedback loop) is 102 V/(m/s?) on its plateau.

18
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Figure 2.5: Linear plot comparing measured (Teledyne) and theoretically
derived (SMU) transfer function for GS13. Both curves were normalized to
26.53 counts per am/s at 5 Hz.
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Figure 2.6: Transfer function for BB13 (measured)
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Gain factors for the transfer functions supplied by Teledyne need to be
slightly adjusted, so that total sensitivities reach their theoretical values at
5 Hz (GS13) and 0.75 Hz (BB13.) Both original and adjusted values are
listed in appendix C.

Teledyne has conducted measurements to verify the theoretically derived
sensitivities, but the results have not been released yet. Another way to test
the assumptions would be the evaluation of the calibration pulses, which are
available for each channel daily.

2.4 Digitization and digital filters

At the A/D-converter, data are sampled at 1200 Hz. It is evident from
figs. 2.4 and 2.6, that the tranufer functions of both GS13 and BB13 have
low pass properties towards high frequencies, so that aliasing is prevented.
Both types of channels are then cascaded down to 40 Hz and 10 Hz sampling
frequency, respectively, through two stages of low-pass filters and re-sampling
algorithms. Finally a digital high-pass filter (1st order Butterworth, 3dB-
point at 300 sec) is employed to remove dc-offset. Fig. 2.7 shows the cascade.

The digital filters are FIR filters, applied in the time domain. As an
example, figs. 2.8 and 2.9 show filter coefficients in the time domain and
amplitude characteristics of filter F6. The low-pass filters cannot be con-
veniently expressed in terms of poles and zeroes. Within their passbands
they have unit gain, cut-off is very sharp and attenuation is 120dB per stage.
The final figs. 2.10 and 2.11 show the overall (analog plus digital) amplitude
characteristics for GS13 and BB13 channels.

Jan Wiister
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Figure 2.8: Digital filter F6 in time domain
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Figure 2.9: Digital filter F6 in frequency domain
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Figure 2.10: Overall amplitude characteristics of GS13 channel, calculated
by multiplication in the frequency domain of analog and digital stages
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Figure 2.11: Overall amplitude characteristic of BB13 channel, calculated by
multiplication in the frequency domain of analog and digital stages
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2.5 Appendix A: proof of conjecture (a)

Be HACC(s) a transfer function assuming ground-acceleration a(t) as input.
We have the transfer equation in the s-plane

Y(s) = A(s) - HAC(s) , (2.1)
A(s) being the Laplace-transform of the input signal

A(s) = L {a(t)} . (2.2)

From (2) we get with a = &
A(s) = £ {a(t)} = £ {3}, (2.3)

and with the diflerentiation theorem for the Laplace-transform

A(s)=s-L{v(t)}=s-V(s). (2.4)

Substituting (4) into (1)

Y(s) = V(s)'- s+ HACO (s)

N, s’

Y(s) = V(s)- HVEL(s) (2.5)
we identify

HVEL(5) = HA%C(s) - s, (2.6)

This proves, that HYVZL(s), the transfer function assuming ground velocity
v(t) as input is obtained from HAYC(s) by adding one zero at zero frequency.
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2.6 Appendix B: Proof of conjectures (b)
and (c)

Let s = tw = i27v and t = iv be the two conventions for mapping the
frequency axis onto the complex plane.

A transfer function supplied by Teledyne using the t-convention is

M
11 (t - 2
k=1

H(t) =V ~ © . (2.1)
[E-n")
=1
Expanding (7) by a suitable number of 2r-factors makes it
" (t
(2m)V 1 (27t — 272;")
Hit)=V,- S =l , (2.2)
@™ 1 (2nt - 2mp)
=1
and the transformation ¢ — s = 27t gives
M
I1(s —2)
H(s)=Vp - —r. (2.3)
IT(s — px)

=1

Comparing (9) to (8) we find that “our” poles, zeroes and gain factors are
related to Teledyne’s via

()

2y = 2Tz
p = 2r-pf"
Vo = Vi-(@m)M-N (2.4)




2.7 Appendix C

Poles and zeroes of GERESS analog channels, as supplied by Teledyne.

The transfer-functions are acceleration-proportional as given [counts/(m/s*2)],

add one zero

at 0 to obtain velocity-proportionality

[counts/ (m/s) ],

add two zeroes at 0 to obtain displacement-proportionality (counts/m].

Values have been transformed to the convention

g =1*we=i*2pi* freqilz],

as opposed to the convention used by Teledyne s = i * freq(Hz).

This implies multiplication of each pole and zero with factor 2pi, and
a corresponding adjustment in the gain factor
our_gain = their gain * (2pi)~(1l-k)

where

1 = number of poles.

k = number of zerxoes and

The number of significant digits is 6 for poles & zeroes and only 2 for

gainfactors.

JW/RUB/25.01.91

A) Broad-band channels BB1l3 ....cevevccassececssoseosasaccoasossossosonsonse

BBl3poles =

BBl3zerces =

BBl3gain =

B) Short-period

GS13poles =

GSl3zerces =

GSl3gain =

-3.034025e+03
-1.217091e+03
-6.,097165e+02
-6.239894e-02
-1.038573e+02
-4.574907e+01
=4.574907e+01
~1.329786e+03
-2.499998e+07
-1.736113e+08

-3.201515e+04
-1.218800e+03
-6.119131e-05
~1.279263e+03

1.97e+32

+

1.232214e+024

- 1.232214e+021

(1.9991e+32 to obtain 0.4279 counts/(nm/s*2) at 0.75 Hz)

channels GS13

-4.384520e+00
-4.384520e+00
-1.221759e+02
-1.221759e+02
-6.072761e+02
-1.329786e+03
-2.499998e+07
-1.736113e+08

0

1.47e+37

D I I I I I R S I R R S R S A Y

1+

4.181227e+0041
4.181227e+004
3.940820e+021
3.940820e+024i

(1.5818e+37 to obtain 26.530 counts/(nm/s) at S Hz)
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3. GERESS STATUS REPORT

JANUARY 1990 - MARCH 1991

In 1990, the hardware installation at the GERESS array-site progressed to
completion. All stations were on-line in August (Figure 3-1). However, techn-
ical problems hindered the operation of the high frequency station C2B until
literally the last day of 1990 when the array started full operation. But even in
the first few months of 1991, the array cannot be considered fully operational.
Various problems still remain unsolved: Channels consistently are desynchron-
ized by a fraction of a second (e.g., Figure 3-2). The array-controller has a ten-
dency to become unstable (e.g., Figure 3-3). There are more gaps in the data
stream than expected from the quality of the communication line (e.g.,
November 1990 GERESS Status Report). The number of gaps per data chan-
nel were found to form 4 groups. These 4 groups correspond to the 4 com-
munication boards on the array-controller. In addition, the number ot gaps per
communications board correlates to the number of channels connected to the
communications board of the array-controller. Data are sent with time stamps
far in the future (e.g., Figure 3-4).

In 1990, the GERESS recording site at Ruhr University Bochum was set
up. At Bochum, first the data acquisition system was installed. In spite of vari-
ous hardware problems at the array site, first priority was assigned to data
archiving starting in April 1990. Due to a massive malfunction of SCIENCE
HORIZONS equipment, data archival had to be done manually from the begin-
ning of April to the beginning of October: an operator had to be present every
day for at least 1 hour (most of the time 2 hours) to write data to tape. On the
other hand, GERESS data are now available as continuously as possible from
the beginning of April 1990. Some data recordirgs exist even for February
1990 and March 1990. In October, an automatic tape archiver was developed
and implemented after a hardware change by Bochum’s system engineer. A
spooler was developed, holding the latest 2 1/2 days of GERESS data in CSS-
2.8 format on disk for off-line data processing. In February 1991, SCIENCE
HORIZONS installed a SPARC based replacement of the data acquisition
hardware at Bochum.

With the help from NORSAR, the RONAPP software package was
installed at Bochum. In June 1990, an on-line STA/LTA detector was imple-
mented. However, due to limitations of performance and disk space, an
effective work using the NORSAR package on-line was not possible for the
first 10 months of 1990. The same is also true for interactive data analysis: A
single fk-transformation took 5 minutes at best. However, this dramatically
changed after a SUN SPARC computer system was installed at Bochum in
early October 1990. A STA/LTA detector, fk-analyzer, and location routine
were implemented for on-line data analysis. A detailed description of the on-
line data analysis is given in The Bochum On-line Processing Display Manager
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in this volume. Figure 3-5 shows the present hardware and data-flow at
Bochum station. The powerful NORSAR package is also used for off-line data
analysis.

Tasks completed at the Bochum Data Center included (Appendix 3-1):
Installation, adaptation, and debugging (in cooperation with SCIENCE HOR-
IZONS) of the on-line data acquisition software (4 software reviews imple-
mented). Installation and adaptation of the NORSAR on-line data analysis
package (4 different updates installed). Purchase and installation of a SUN
4/330 server (96 MB in core, 6 GB disks), 4/65 SPARC station (40 MB in
core), and two 4/20 (8 MB in core). Integration of acquisition workstation SUN
3E and monitoring workstation SUN 3/50 into the ethernet of the SUN 4s.
Installation of system software (2 versions of X11 window system, 2 versions
of a FORTRAN compiler, MATLAB). Establishment of a seismological obser-
vatory routine at Bochum: An automatic data archiver was developed and
implemented. Monthly GERESS status reports are published (available upon
request). Interesting events are analyzed and written to event tapes. Since June
1990, GERESS data are processed on-line. Since October 1990, a downtime
list for Bochum is available (see monthly GERESS Status Reports). Data dis-
tribution has started, e.g. to BGR (Bundesanstalt fur Geowissenschaften und
Rohstoffe) and NORSAR.

In conclusion: during 1990 and ‘the first few months of 1991, a seismic
observatory was established at Bochum for the GERESS array. Since April
1990, the GERESS project team at Bochum archives GERESS data continu-
ously; since June 1990, a detector is on-line; since October 1990, a fk-analysis
routine is on-line and data are automatically archived. A powerful off-line
analysis package is available: for the test-week of 26.11.-2.12. 1990 (GSETT-2,
phase-3), 218 events were located by the GERESS project team in Bochum.
Since January 1991, an automatic location routine is in operation; since Febru-
ary 1991, scientists can remotely access the results of the Bochum on-line pro-
cessing via X25 (WIN); since March 1991, a stable, powerful acquisition
workstation is on-line freeing scientific personnel from unnecessary routine
work. For April, the first routine bulletin for GERESS is in preparation.

Michael L. Jost
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Appendix 3-1: Chronological Status List

Jan. 1990: Data acquisition software and hardware by SCIENCE HORIZONS
was analyzed. Preparation of data transfer to BGR. Visit of BGR
for analyzing GERESS data with a frequency-wavenumber transfor-
mation algorithm. Implementation of the fk-analysis module of the
XAP (experimental array processor) software package. Various fk-
analyses of data from the GERESS TEST array.

Feb. 1990: GERESS sites on-line: 8. On Feb 7, first successful run of on-line
data acquisition, first data archival tape on acquisition workstation.
First off-line data analysis using VISTA (SCIENCE HORIZONS).
Visit of technicians from SCIENCE HORIZONS from 26.-28.:
hardware change, new operating system and acquisition software
installed. Training on the new software release.

Mar. 1990: GERESS sites on-line: 9. Documentation of acquisition start
without loosing data. Test of data segmenter successful (data seg-
ments have to be sufficiently short to be suitable for the fk-analysis
module of XAP). Transformation of GERESS data to XAP data
format, and adaptation of XAP’s fk-analysis module. Various fk-
analyses of data from the GERESS array. Acquisition system
crashed due to a blown fuse. Reinstallation of system and data
acquisition software. Software development of an automatic tape
archiver. Installation of X11 window system on data acquisition
machine (For X11, at least 8 MB were required in core. Acquisi-
tion workstation has 16 MB in core, the only other available
workstation (SUN 3/50) had 4 MB in core where a memory
upgrade failed). Visit of J. Fyen (NORSAR). Installation of NOR-
SAR software on data acquisition workstation since X11 was
installed there. Acquisition workstation has severe problems stay-
ing on-line when running the NORSAR detector together with the

data acquisition. Furthermore, a standard fk-analysis took more than
10 minutes.

Apr. 1990: GERESS sites on-line: 14. Start of routine data archival. Analysis
and documentation of EXABYTE problems: It is not possible to
archive data on acquisition workstation unattended. Therefore, the
previously developed automatic tape archiver is obsolete. Develop-
ment and documentation of manual data archival procedure: Due to
a malfunction on SCIENCE HORIZONS data acquisition worksta-
tion, every day (including weekends and holidays) an operator had
to be present for at least one hour (very often 2) to archive data
manually. SCIENCE HORIZONS promised a solution to this
hardware problem. Implementation of reviewed on-line data
acquisition software from SCIENCE HORIZONS.
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May 1990: GERESS sites on-line: 16. Work with NORSAR package. Due to

June 1990:

space problems on disk (for manunal data archiving, disk space is
needed for at least 24 hours of CSS-2.8 data), NOKSAK software
and X11 window system removed from disk. Future date on data,
restart of data acquisition documented which included a reinstalla-
tion of diskloop. Visit of M. L. Jost to NORSAR (training on
NORSAR software, i.e., on-line detector, fk-analyzer, and locating
routine RONAPP). SCIENCE HORIZONS postponed the promised
solution to the EXABYTE problem.

GERESS sites on-line: 20. Reinstallation of X11 and NORSAR
software on acquisition workstatior. Installation of STA/LTA on-
line detector. Detector ran only with very few beams due to over-
load problems on acquisition workstation. Other packages such as
on-line fk or RONAPP were nor implemented due to overload
problems on data acquisition workstation. Installation of a new on-
line acquisition software release (structure of disk-loop changed).
SCIENCE HORIZONS again postponed the solution to the EXA-
BYTE problem.

July 1990: GERESS sites on-line: 23. Visit by J. Fyen (NORSAR). First com-

Aug. 1990:

pilation of detector software at Bochum. Restructuring disk space
on acquisition workstation. Status of acquisition workstation
changed: machine runs as root to allow using all possible disk
space (24 hours of CSS data needed to be held on disk due to the
inability of the acquisition workstation to archive data). SCIENCE
HORIZONS again postponed the solution to the EXABYTE prob-
lem. Test of detector. Preparation of computer purchase. Com-
puter ordered by university administration.

All 25 GERESS sites on-line. However C2B is sampled at 40 Hz
instead of 120 Hz. Synchronization errors between traces reported.
Visit of E. Herrin and P. Golden (SMU). August 22 marks the first
time that all stations of GERESS (in their proper configuration)
were on-line for 15 minutes. SCIENCE HORIZONS again post-
poned the solution to the EXABYTE problem.

Sep. 1990: Since SCIENCE HORIZONS did not deliver the promised solution

Oct. 1990:

to the EXABYTE problem, Bochum’s system engineer disassem-
bled the acquisition workstation to take out the EXABYTES and
connect them to a workstation of the department. Data transfer via
ethernet turned out to be stable. However, a workstation (3/50) of
the department dedicated to other projects became fully occupied
with data archiving and array monitoring.

An automatic array downtime routine was developed and imple-
mented. Development agil implementation of an automatic tape




Nov. 1990:

Dec. 1990:

archival routine. Installation of a SUN 4/330 server (96 MB in
core, 6 GB disks), 4/65 SPARC station (40 MB in core), and two
4/20 (8 MB in core): Formatting additional disks and installation of
kernel patches. Optimization of system kernels. Integration of
acquisition workstation SUN 3E and monitoring workstation SUN
3/50 into the ethermet of the SUN 4s. Installation of system
software (X11 window system, FORTRAN compiler version 1.3.1).
Installation of NORSAR software and recompilation.

Compilation of NORSAR software on SPARC systems. Problem:
library modules compiled with different FORTRAN compiler ver-
sions are incompatible. Installation of MATLAB software package
on SPARC server. Installation of on-line detector and on-line fk-
analyzer on SPARC server. Training of GERESS project team on
NORSAR software. A module correcting for instrument responses
was developed and included into the NORSAR package. Extensive
GERESS data analysis in connection with the GSETT-2, phase 3:

Extensive GERESS data analysis in connection with the GSETT-2,
phase 3. Upgrading the automatic data archiver (about 7 days of
data can be archived without manual interference). Implementation
of remote (using a PC and a modem) status testing and problem
solving of data acquisition. Installing another FORTRAN compiler
version (1.2). Testing RONAPP (automatic location routine of the
NORSAR package).

Jan. 1991: Disk reformatting on acquisition workstation after frequent crashes

Feb. 1991:

due to disk failures. Due to those crashes, station uptime below 80
%. Complete recompilation of the NORSAR software and imple-
mentation of RONAPP (automatic location routine).

Frequent crashes of acquisition workstation reappeared. Station
uptime at 81 %. Visit by technician of SCIENCE HORIZONS and
installation of replacement of the acquisition system at Bochum
(CIM with SCSI; workstation: SUN 4/65 with 40 MB in core and
1.3 GB disk; 4 EXABYTE drives). Customizing acquisition
software. Adaptation of data spooler and automatic data archiving
routine. Correction of calculation of ML magnitudes in RONAPP.
Development of an on-line processing display manager.

Mar. 1991: The new acquisition system at Bochum turned out to be very stable.

Uptime reached 96 %. Customizing acquisition software and
debugging in cooperation with SCIENCE HORIZONS. Coopera-
tion with NORSAR on further adaptation and debugging RONAPP.
Evaluation of Vogtland (Germany) earthquake swarm. Upgrading
the on-line processing display manager.

32




12/31/1990

300
o 2007 | n |
Q
Q ) T d

100 { | [ o

-
A-RING B-RING C-RING D-RING

Y1900 1 2 3 1 23 451 2A2B3 45 67 123456789

GERESS SITE NAME

Figure 3-1: Startup of GERESS SITES. Time increases in days of year from
bottom (Jan. 1, 1990) to top (Dec. 31, 1990).
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4. THE BOCHUM ON-LINE PROCESSING DISPLAY MANAGER

The Department of Geophysics of Ruhr-University Bochum operates an
experimental on-line processing system for GERESS data. This system uses
software developed at NORSAR and modified at Bochum. The on-line pro-
cessing consists of 3 steps: detection, fk-analysis, and location. Consequently 3
consecutive lists exist for each day. The purpose of the ON-LINE PROCESS-
ING DISPLAY MANAGER is to make these three lists available for interested
scientists.

The GERESS data are transmitted to Bochum via a 64 kbit land-link. The
acquisition processing results in CSS-2.8 databases used for archiving. For the
seismological on-line processing, the circular buffer of 24 bit time sorted real-
time data is used.

The first stage of the on-line processing accesses data in 30 second seg-
ments and runs a STA/LTA detector. The detector presently recognizes an
onset if the STA/LTA ratio for a filtered trial-beam exceeds a threshold of 4.
The present beam set for the detector is given in option deti of the display
manager. As a result of the detection processing, a daily list is updated to
present a detection beam identifier, day of year, detection time, values for STA,
LTA, and the STA/LTA ratio. This list is displayed in option det of the
display manager.

The next step of the on-line processing is the transformation of a 3 second
filtered data segment at each onset time (derived from the detection time) into
the frequency-wavenumber domain. As a result, the slowness and back-
azimuth of the phase is determined. From the slowness information, seismic
phases are identified. Consequently, the daily list of the tk processing includes
an identification number, day of year, onset time of the phase, time difference
between onset time and detection time, a beam identifier, signal noise ratio (i.e.,
the STA/LTA ratio), phase velocity in km/sec, a phase identifier, back-azimuth
in degrees from north, and a coherency value describing the quality of the fk-
result (1.0 being excellent, 0.0 being very poor). These lists are available in
option fk of the display manager.

The final step of the on-line data processing is the location of events. The
seismic phases as identified in the fk-analysis are associated to events in this
step. From the arrival time difference of regional phases, the distance to the
epicenter can be determined from standard travel time tables. Together with a
mean back-azimuth, the epicenter locations of local and regional events are
determined. Only these epicenter locations are displayed in the third list: after a
line specifying the Flinn Engdahl region, the next line shows origin time, lati-
tude and longitude, ML magnitude, epicentral distance in km, back-azimuth in
degrees, and depth in km, where "F" means that the depth was fixed in the
location algorithm. These automatically calculated epicenter locations are
displayed in option epi and some location statistics are available under option
err of the display manager.
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After describing the processing stages, the term "on-line processing" needs
some specification. All processing is done on hardware that has the ability to
perform the processing much faster than real-time. The detector accesses real-
time data. After it catches up to real-time, it stops for 5 minutes and restarts
again. The same procedure holds for the fk-analysis and the location routine,
where the sleep-times are 3 minutes, however. Generally, the results of the
detector and fk-analysis should be available 10 minutes after real-time.

Waveforms of the raw data can be displayed using a TEKTRONIX termi-
nal emulation (option plor of the display manager).

The caveat of using results of the ON-LINE PROCESSING DISPLAY
MANAGER are obvious: Results of the on-line processing system, e.g. the
locations, are calculated completely automatic and have NOT been reviewed by
an analyst (Reviewed epicenter locations will be available shortly under option
loc). Algorithms of the processing (e.g., beam set and filters in the detector,
phase association rules) have changed with time. The implemented on-line pro-
cessing system is experimental and the quality of results varies. The option
down of the display manager informs about array downtimes.

This ON-LINE PROCESSING DISPLAY MANAGER is subject to
updates. An on-line information is available under option info. Option mess
enables a one-line message to the system manager. For more extensive
remarks, please contact Mike Jost at
TEL.: 49 234 - 700 3277
FAX: 49 234 700 2442
E-MAIL: c=de; a=dbp; p=ruhr-uni-bochum; ou=geophysik; s=jost

In Appendix 4-1, a brief sample session is given.

Michael L. Jost
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Appendix 4-1: Sample Session

login via x25 (WIN) # 45050310818
login >>> geress
passwd >>> bochum

TODAYs DATE: 91083

Commands: det  detection lists deti
fk fk lists down
epi  unreviewed location lists err
loc  reviewed location lists doy
plot TEKTRONIX plot module info
exit logout, end session mess

Enter command>det

info on current detector
info on array downtimes
info on location errors
info on days in year
info on display manager
message to manager

Commands: <CR> next screen, continue q abort, stop

Detection lists available since : 90150

ENTER DATE in the format: yyddd (yy = year; ddd = day of year) >>>91083

BEAM DOY:DETECTION TIME STA LTA
GF777  083:00.11.38.6 - 11.39.1 241.47 48.83 4.946
GF104  083:01.28.29.8 - 28.30.8 54.83 10.43 5.256
GF103  083:03.10.01.1 - 10.03.1 127.83 1095 11.668
GF103  083:03.10.12.1 - 10.12.8 86.94 19.17 4.534
GRP 083:03.13.34.6 - 13428  474.74 10.37  45.774
GF619  083:03.13.35.6 - 13.41.1 474.74 1037  45.774
GF621  083:03.13.40.8 - 13.44.1 74.79 13.35 5.604
GRP 083:03.14.02.8 - 14.08.8 181.26 18.07 10.029
GF612  083:03.14.03.6 - 14.08.1 181.26 18.07  10.029
GF999  083:03.43.49.6 - 43.51.6 94.98 20.17 4.710

GF619  083:04.34.00.8 - 34.02.3 67.30

9.10 7.393

GF888  083:05.05.30.3 - 05.34.1 304.60  45.83 6.646
GF724  083:05.05.36.6 - 05.46.3  716.31 10.33  69.373
GRP 083:05.05.36.6 - 05.50.3  716.31 10.33  69.373
GF713  083:05.05.45.8 - 05.49.8 331.88 5094  6.515
GF777  083:05.05.50.8 - 05.51.8  1023.89 203.50  5.031
GRP 083:05.06.00.7 - 06.08.1 855.09 3243 26.365
GF106  083:05.06.00.8 - 06.06.6  855.09 3243 26365
GF104  083:05.06.07.3 - 06.08.8 395.64  60.12 6.581
GF724  083:05.35.53.6 - 36.00.8 13191 10.56  12.492
GF623  083:05.36.00.6 - 36.01.6 73.97 15.85 4.668
GRP 083:05.36.16.2 - 36.23.1 187.25 13.10  14.290
GF608  083:05.36.16.6 - 36.22.3 187.25 13.10 14.290
Gvil 083:06.21.30.7 - 21.32.7 380.06 5352  7.101




Commands: det detection lists deti info on current detector

fk fk lists down info on array downtimes
epi  unreviewed location lists err info on location errors
loc  reviewed location lists doy info on days in year
plot TEKTRONIX plot module info info on display manager
exit logout, end session mess  message to manager

Enter command>fk

Commands: <CR> next screen, continue q abort, stop

FK lists available since : 90311

ENTER DATE in the format: yyddd (yy = year; ddd = day of year) >>>91083

# DOY T, T,,T; BEAM SNR VEL PHASE BAZ COH
1427 083:00.11.38406 0.19 GF777 49 19 nois 469  0.08
1428  083:01.28.28.500 130 GF104 53 215 P 56.3 0.8
1420  083:03.09.59.925 118 GF103 11.7 408 P 943 071
1430  083:03.10.10475 162 GF103 45 702 P 3445 052
1431  083:03.13.34413 1.19 GF619 458 66 PG 1857  0.17
1432 083:03.13.40.538 026 GF621 56 20 nois 388  0.08
1433 083:03.14.01.850 175 GF612 100 39 LG 182.1 033
1434  083:03.43.47.673 193 GF999 47 300 P 2143 0.79
1435  083:04.34.00463 034 GF619 74 32 RG 63.2 0.8
1436  083:0505.30.131 0.7 GF888 66 34 RG 213 0.08
1437 083:05.0535862 074 GF724 69.4 91 PN 3250 021
1438  083:05.05.45.538 026 GF713 65 67 PG 3270 007
1439 083:05.05.50.631 0.17 GF777 50 20 nois 2282 0.09
1440  083:0505.59.450 135 GFI06 264 39 LG 3247 048
1441  083:0506.06775 052 GF104 66 42 LG 3175 027
1442 083:05.35.52.588 101 GF724 125 82 PN 3146 0.11
1443 083:0536.00.338 026 GF623 47 67 PG 3293 007
1444  083:05.36.14.800 180 GF608 143 40 LG 3237 035
1445  083:0621.30.175 052 GVIl 71 114 P 33.0 018
q
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Commands:

Enter command>epd

det

epi
loc
plot
exit

detection lists

fk lists

unreviewed location lists
reviewed location lists
TEKTRONIX plot module
logout, end session

Commands: <CR> next screen, continue
Unreviewed location lisis available since : 91021
ENTER DATE in the format: yyddd (yy = year; ddd = day of year) >>>91083

HYP Fl-Eng REGION
DOY OT  EPX LAT LONG

8000 HYP 546 AUSTRIA
8000 083:03.12.58.8 EPX  46.866  13.485
8010 HYP 543 GERMANY
8010 083:05.05.11.2 EPX  50.124  12.333
8020 HYP 543 GERMANY
8020 083:05.35269 EPX  50.072 12.305
q
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ded info on current detector
down info on array downtimes
err info on location errors
doy info on days in year
info info on display manager
mess  message to manager

q abort, stop

ML D[km] BAZ
140 2205 1843
1.84 173.1 3257
127  169.6 3240

DP

OF

OF

OF




Commands: det detection lists deti info on current detector

fk fk lists down info on array downtimes
epi  unreviewed location lists err info on location errors
loc  reviewed location lists doy info on days in year
plot TEKTRONIX plot module info info on display manager
exit logout, end session mess  message to manager

Enter command>plot

YOUR SCREEN SHOULD BE IN TEKTRONIX MODE NOW

EXIT PLOT ROUTINE (1))
Display map of GERESS stations 09
Plot waveforms of the 25 vertical channels 40 Hz (2)

Plot waveforms of the four 3-component stations 40 Hz (3)
Plot waveforms of the high frequency channels 120 Hz (4)
Plot waveforms of the broad-band channels 10 Hz (5)
Plot waveforms of the 3 verticals at C2  120,40,10 Hz 6)

Enter option>2

ENTER DATE yyddd (yy=year;ddd=day of year) [0] >>>91083
ENTER HOUR hh (hh = hour) [0] >>>05

ENTER MINUTE mm (mm = minute) [0] >>>05

ENTER SECOND ss  (ss = second) [0] >>>32

ENTER DURATION ssss  (ssss second) [0] >>>60

ENTER DECIMATION dd (plot every dd-th point)  [0] >>>1
ENTER AMPLIFICATION a.a (largest amplitude = a.a cm)[0] >>>1.0
ENTER VIEWING DURATION sss (sss = seconds) [0] >>>20
Reading data of channel GEAOQsz

Reading data of channel GED9sz

Here comes the plot

Commands: det  detection lists deti info on current detector
fk fk lists down info on array downtimes
epi  unreviewed location lists err info on location errors
loc  reviewed location lists doy info on days in year
plot TEKTRONIX plot module info info on display manager
exit  logout, end session mess  message to manager

Enter command>exit




5. EVALUATION OF GERESS FOR PHASE 3 of GSETT-2

NOVEMBER 26 - DECEMBER 2, 1990

5.1 Introduction

In 1991, the Group of Scientific Experts (GSE) of the Conference of
Disarmament in Geneva is planning a second Technical Test (GSETT-2) to
contribute to the further elaboration of a modern seismic monitoring system.

The overall purposes of GSETT-2 are

- testing of methods and procedures developed by the GSE to
expeditiously extract and transmit data from stations to experi-
mental international data centers (EIDCs), to process these data
at EIDCs, and to transmit the results back to the participants.

Prior to the main experiment which is scheduled for the time period April
22 - June 2, 1991 several preparatory tests were performed by the GSE. The
final preparatory experiment testing all elements and procedures of the
envisaged system took place from November 26 - December 2, 1990 and
involved data exchange for 7 consecutive days. We took this occasion and fully
analyzed GERESS data for the first time.

5.2 GERESS Data Analysis

During this time period, the array uptime was 99.5 % but due to problems
with the acquisition system in Bochum, 12 hours of data were lost on
December 1. Therefore, the period of analysis covered only 92.1%.

In Bochum, an automatic on-line processing was implemented which
included beamforming, detector, and f-k analysis.

Beams were computed for 30 degree azimuth intervals and 3 velocities
(3.5 kmy/s, 7.0 km/s, and 11 km/s), and in addition for teleseismic events (999.9
km/s) and for air-coupled disturbances (0.3 km/s). The last beam was necessary
to discriminate events which originated from practice firing at a tank training
area which is located about 20 km NW of the array site.

At a STA/LTA ratio of 4, 1007 detections were triggered, 611 of which
could be confirmed as seismic phases by inspection. On the other hand, the
analysts found 201 additional seismic onsets by looking at the raw traces in a
time window around the automatic detections. From these numbers, it seems to
be justified to conclude that the false alarm rate as well as the missed event rate
is about 40%.

The location process was performed interactively by reading each onset

time and reanalyzing the f-k results in different frequency bands. In this way,
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219 local and regional events were found comprising 621 seismic phases.
Additionally 79 phases were associated with 43 teleseismic events by using
PDE (weekly listing) and EIDC reports. In summary, only 112 phases (14%)
were left unassociated.

At NORSAR, a completely automatic RONAPP analysis was carried out
using the same GERESS data. With possibly different parameter setting, the
detector triggered 1171 times (91 detections were found in the 12 hours data
gap at Bochum), which is very similar to the number of detections in Bochum.
But RONAPP located only 95 events, which is 40% of the events located
interactively in Bochum.

The GRF broad-band array is located about 150 km north of GERESS, a
comparison of the performance is interesting. The GRF detector found 107
phases which is only 10% of the GERESS detections. Since GRF has no loca-
tion capabilities at regional distances, no epicenters were reported. But if these
detections are associated in hindsight, GRF found 68 events which corresponds
to one third of the GERESS events. A further analysis shows that GERESS is
also superior to GRF in the teleseismic range were GRF found 9 events com-
pared to 43 at GERESS.

In conclusion, this one week experiment already demonstrated that a
teleseismic broad-band array like GRF is of limited value in the context of a
CTB or low-yield treaty monitoring system.

Figure 5-1 summarizes the number of detections and locations for
GERESS determined interactively (Bochum) and determined automatically
(RONAPP) and the equivalent numbers for GRF. Figure 5-2 shows a map of
all GERESS (Bochum) locations. Most of these events originate from quarry
blasts within 200 km distance from the array. In addition, the earthquake
sequence in Yugoslavia can be recognized and also the two mining areas in
Poland are visible.

A further comparison of interactive and automatic locations for the
GERESS data shows that there is not only a quantitative but also a qualitative
difference. For that purpose, the common events are plotted separately in Figure
5-3 and Figure 5-4. In general, a larger scatter in the RONAPP locations is
obvious. Moreover, some remarkable outlyers on the RONAPP map were
further investigated (event nos. 17, 18, 24, 50).

Figure 5-5 shows the waveform segment from one GERESS vertical chan-
nel for a Polish mining event (no. 17). A comparison between the RONAPP
and interactive analysis yields that RONAPP misidentified a secondary phase as
Sn instead of Sg. A similar misidentification happened for the second example
which is shown in Figure 5-6 (no. 18). Again a secondary phase is labeled as
Lg which is recognized as Sn by the analyst. A third example shows a Yugos-
lavian earthquake mislocated by RONAPP (Figure 5-7). This event (no. 24) is a
mixed event where a second event for which no Pn-phase was found is associ-
ated as Lg by RONAPP to the first event. Similarly, the last example (Figure
5-8) shows a mixed event situation where a local quarry blast is interpreted as a
regional event by RONAPP due to a Zgry noisy situation which is typical for




midday time in this part of Europe.
In all cases the f-k analysis and consequently the azimuth determination is

quite acceptable but the phase association and consequently the distance of the
events is wrongly determined by the automatic processing.

These results should not be misinterpreted. Overall RONAPP performed
amazingly well taking into account that no special tuning for the specific
GERESS situation was undertaken. On the other hand, much work remains to
be done to achieve satisfactory results for an automatic bulletin.

Finally a very preliminary comparison between the GERESS locations and
those of international data centers was tried. Only a few larger events were
located by data centers which are shown in Figure 5-9. In general, GERESS
achieved excellent locations whereas the EIDC locations exhibit some scatter
compared to PDE. An explanation might be the fact that PDE uses more rou-
tinely reporting stations than participated in the GSE experiment.

5.3 Conclusion

Regional arrays like GERESS can make significant contributions to a glo-
bal seismic monitoring system in terms of lowering its worldwide detection
threshold and yielding excellent locations even for small events at regional dis-
tances. In this way, the number of unassociated phases which are inherent in
every network of single 3 component stations can drastically be reduced.

Nicolai Gestermann
Hans-Peter Harjes
Michael L. Jost
Johannes Schweitzer
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event locations from GERESS data (Bochum) Compared to IDC-
1center determinations.
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6. NUCLEAR TESTS OBSERVED WITH THE GERESS ARRAY IN 1990

6.1 INTRODUCTION

The GERESS array was planned and installed in southern Germany in 1990 for
monitoring the local and regional seismicity in central Europe and surrounding
areas. GERESS was planned as part of a four element array network in Europe,
but it is also possible to locate local and regional earthquakes and explosions
using GERESS exclusively. Additionally the low noise level (e.g. Harjes,
1990), especially in the frequency band lower than 2 Hz, results in good moni-
toring conditions for all teleseismic distances from the GERESS site. Although
the aperture of the array is only about 4 km, it was possible to determine
backazimuths (BAZ) and slownesses (P) for all teleseismic distances up to
160°. The uncertainty of these parameters could not be investigated, because
the array is still (March 1991) not fully operational. The most important prob-
lem is, that the time base for the different channels is not stable i.e. some chan-
nels show unexpectable time drifts (plus and minus) of up to 1 sec. Though
random, not recognizable time drifts affect all following slowness and backa-
zimuth determinations. Nevertheless most of identified or presumed nuclear
tests of 1990 could be observed and investigated:

Country Test Site Epicentral  # of Tests  # of GERESS
Distance Registrations

China (Nop Lor) 51.3° 2 1

France (Mururoa) 145.4° 4 4

France (Fangataufa) 145.6° 2 2

USA (Nevada) 83.5° 8 4

USSR (Novaya Zemlya) 30.4° 1 1

The differences between the total number of tests (17) and recorded events (12)
is caused either by downtime of the GERESS acquisition system (2) or by tests,
which were too small (3) to produce an observable signal at the GERESS site.

In the following I will describe all observations of presumed nuclear explosions
by the different test sites. The data of all available GS13 vertical channels are
shown either unfiltered or filtered with a third order butterworth bandpass from
0.5 Hz to 2.5 Hz. The general results of the analysis are listed in Tab. 6-1. Sta-
tion GEC2 was used as reference for all investigations (fk-analysis and beam
forming). All times, amplitudes, signal to noise ratios (SNR), and periods have
been measured on the beam.
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Tab. 6-1: Observed parameters of presumed nuclear tests recorded at GERESS

in 1990.
Location  Date Onset Time Ampli. Period Timeof SNR m, BAZ P
(nm] [sec]  Ampli. [deg]  [sec/deg]
Nop Lor May 26  08:09:074 648 090  09:094 100 4.6 68.0 7.84
Mururoa Jun 02 17:49:38.6 3269 088  49:400  58.0 319.7 238
Mururoa Jun 07 17:49:39.5 577 050  49:409 16.4 297.6 252
Nevada Jun 13 16:12:29.8 5752 111 12:328 935 57 3253 298
Fangataufa Jun 26 13:19:39.9 14854  1.57 19:43.3 1022 307.7 135
Mururoa Jul 04 18:19:395 1468 087  19:409 28.4 297.8 1.90

Nevada Jul 25 15:12:30.5 438 099 12:31.8 83 47 3215 2.87
Nevada Oct 12 17:42:30.1 31.07 1.07  42:329 559 55 3199 3.60
Novaya- Oct 24 15:04:14.0 8587 112 04:183 9.3 55 29.2 9.02

Zemlya

Fangataufa Nov 14  18:31:399 14279 150 31425 1115 3215 223
Nevada Nov 14  19:29:299 2253 097  29:31.8 591 54 329.1 458
Mururoa Nov 21 17:19:39.6 64.65  0.81 19:41.0 89.8 320.2 1.63
6.2 NOP LOR

The first presumed nuclear test, which could be recorded with the GERESS
array, was an event at the Chinese test site Nop Lor on May 26, 1990. Fig. 6-1
shows the original recordings, in Fig. 6-2 additionally to the filtered seismo-
grams the best beam for the P-phase is also shown. The observed magnitude of

my, = 4.6 is unexpected low for an explosion with a network magnitude of
my, = 5.4 (PDE).

This observed discrepancy needs further investigations. Either it is a true effect
of Earth’s structure or it is the result of a general malfunction of the array at
this time. If new tests will confirm our results, the GERESS array would have a
magnitude residuum of -0.8 magnitude units for Nop Lor events. With an
STA/LTA detection threshold of 4.0, as used for the GERESS detector, this
implies a detcction threshold for events at Lop Nor with a network magnitude
of my= 5.0. Unfortunately the whole array was down, when the second
Chinese nuclear test occurred on August 16, 1990.
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6.3 FANGATAUFA and MURUROA

In the epicentral distance range between 140° and 150° the structure of the
Earth’s core amplifies - like a focusing lens - seismic waves, which travel
through the Earth’s core as PKP-phases. The comparison of the daily detection
list of GERESS with bulletins of international seismic centers shows, that
GERESS is therefore very sensitive for the seismicity in the Southern Pacific.
The two French nuclear test sites Mururoa and Fangataufa are located very
close to each other in the Tuamotu Archipelago. They have an epicentral dis-
tance to GERESS of about 145.5°, right were the maximum of the PKP-caustic
is observed (Fig. 6-3). Therefore we expect a low detection level for seismic
events at these test sites. The seismograms of all observed French explosions
are shown in Fig. 6-4 - Fig. 6-10.
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Fig 6-3: Cumulative logarithmic amplitude plot containing normalized PKP-
amplitudes (from: Hiige, 1981). The epicentral distances from the French test
sites to GERESS and GRF are marke%.o




Tab. 6-2: Amplitude and magnitude observations of French nuclear tests in 1990.

Date Amplitude Period log(A/T) m my SNR Det. Thr.
[nm] [sec] (PKP) (PDE) (my)

Jun 02 32.69 0.88 1.57 5.07 5.3 57.99 391
Jun 07 sn 0.90 0.81 431 6.42 3.70
Jun 26 148.54 1.57 1.98 548 5.5 102.17 4,07
Jul 04 14.68 0.87 1.23 4.73 5.1 28.45 3.88
Nov 16 142.79 1.50 1.98 5.48 5.6 111.45 4,03
Nov 21 64.65 0.81 1.90 540 5.4 89.82 4.05

Because the body wave magnitude my, is not defined for events with an epicen-
tral distance of more than about 100° I could not determine my-values for
these explosions directly. Schlittenhardt (1988) introduced a body wave magni-
tude for PKP-observations of the French explosions at the Grifenberg array
(GRF). Although the distance between GRF and GERESS is only about 150km,
we cannot use his results to calculate my-values, because the amplitude-distance
behaviour of the PKP-phases changes in this distance range drastically (see Fig.
6-3). Therefore I corrected the observed log (A/T) values with the attenuation
curve of Blandford and Sweetser (1973) for PKP-phases. With the correction
value of 3.50 for an epicentral distance of 145.5° I determined the m,(PKP)-
values for the French explosions. For five of these events our my(PKP)-values
can be compared with "classical" my-determinations in the PDE by NEIS. The
agreement between the my-values calculated with different methods confirms
the proposed usage of PKP-phases for regular worldwide monitoring of as well
the seismicity as the nuclear test activities (Harjes, 1985).

The detection threshold (Det. Thr.) was calculated from the observed signal to
noise ratio (SNR), the detector threshold of 4.0, and the calculated values for
my(PKP). The mean value for the detection threshold of Tuamotu Archipelago
events at GERESS is about my(PKP) = 3.9.
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6.4 NEVADA

Four of eight nuclear tests at the Nevada test site (NTS) could be observed with
the GERESS array. Records of all events are shown in Fig. 6-11 - Fig. 6-15.
The calculated my-values are in good agreement with the network magnitudes
published by NEIS (PDE, either monthly or weekly listings). In Tab. 6-3, I
listed a detection threshold in my, considering the observed SNR for all NTS
events respectively. From these numbers the mean value of the detection thres-
hold for NTS explosions can be determined as my, = 4.4.

One surprising observation is, that for these events extremely small slowness
values have been determined (see Tab. 6-1). Only one value (November 14,
1990) is close to the theoretical value (Herrin Tables) of P = 5.09 sec/deg. But
because of the timing problems (see Introduction), this problem was not investi-
gated in more detail.

If the time base of all channels of the array is stable, it will become also possi-
ble to investigate the P-wave coda of these events. The PKP-waves from the
French explosions arrive more or less from the some backazimuth at GERESS
and show a similar picture: Coherent energy, which cannot be explained with a
spherical Earth model. Obviously, a large amount of this energy is scattered off
the great circle path.

Tab. 6-3: Magnitudes and detection thresholds for the NTS-explosions in 1990.

Date my m, SNR Det. Thr.
GERESS PDE [my]
Jun 13 5.7 57 935 4.3
Jul 25 4.7 4.7 8.3 4.4
Oct 12 5.5 56 559 4.5
Nov 14 5.4 54 591 4.2
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6.5 NOVAYA ZEMLYA

In 1990 the Soviet Union carried out only one nuclear test. This test on
October 24 was the nuclear explosion, which had been recorded at GERESS in
1990 with the smallest epicentral distance of 30.4°. The records are dominated
by the very prominent P-wave coda (Fig. 6-16), and a very complex pulse form
of the direct P-wave (Fig 6-17). This feature must be explained by contribu-
tions from the direct waves of the upper mantle triplications, by converted
phases, multipathing, and by a lateral heterogeneous structure of crust and
upper mantle in Europe. The observed magnitude my, = 5.5 for this explosion is
once more in good agreement with the PDE (weekly listing) investigation (m,
= 5.6). With the observed SNR of 90.3 the detection threshold for this test site
at the GERESS array is my, = 4.1.

In Fig. 6-16 one clear coherent onset about three minutes after the first arrival
is seen. This phase could be ilentified as PcP (Fig. 6-18) with its onset time
and the results of the f-k analysis. This phase has the right slowness (2.6
sec/deg) for a PcP-phase in an epicentral distance of 30°. An unexplained
observation at this moment is the anomalous high PcP/P amplitude ratio. A
possible explanation would be a focusing structure for PcP elsewhere on its ray
path. This leeds me to look for other PcP-observations in epicentral distances
smaller than 35°. When we have a greater collection ot PcP-observations in this
distance range, it will become possible to discuss this problem in more detail.
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7. REGIONAL WAVEFORM ANALYSIS WITH
GERESS DATA

7.1 INTRODUCTION

One of the main purposes of the GERESS array is the detection and localiza-
tion of regional and local events. The localization depends mainly on the velo-
city analysis of dominant onsets in the seismograms and the ability to discrim-
inate between P- and S-phases. If the structure of the crust is well known, a
detailed classification is possible. In this paper, the velocity analysis is extended
to the whole time-window of the cvent, to identify additional phases and to find
indications of azimuth dependent structure. For a better interpretation, the same
analysis is repeated with synthetic seismograms for a simple crustal model.

The configuration of the array is most favorable for the investigation of events
in the local and regional distance-range up to 30°. Phase-velocities of the dom-
inant signals range from 2 km/sec to 10 km/sec. Undercritically reflected phases
may have significantly higher velocities. The frequency-range of the analyzed
phases generally extends from 1 Hz to 20 Hz. For some events we could
observe signal frequencies above 50 Hz. Aside from the <Irequency-
wavenumber characteristics of the investigated signals, their coherence across
the array is important for the configuration of the array. The coherence length
depends on frequency but also on the local geology. Strong inhomogeneties
below the seismometer locations may reduce the coherence length.

To study the coherence of noise and signals, a test-array had been installed near
the proposed place for the final array (Harjes, 1990). The signal ccherence was
derived from events recorded with this test array. The investigation of noise
was made for a time-window before the first onset. Defining correlation length
L as the characteristic separation between stations, for which the coherence
coefficient C drops below 0.25, the correlation length L for the noise is about
800 m in the 1 - 2 Hz passband and 400 m in the 2 - 4 Hz passband. The
signal-coherence is greater than 0.95 and 0.85 for the two frequency-bands,
respectively. Station AG was omitted to avoid coherent roise influencing the
results of this study. Thus the minimum station distance increased from 161 m




to 241 m, and only a few station distances remain below the coherence length
of the noise.

The determination of phase-velocity and azimuth for seismic onsets was done
with the conventional broad-band f,k power spectrum technique (Capon, 1973).
The maximum resolution of this method is given by the width of the main lobe
of the array response function (fig. 7.1), depending only on the array
configuration. A comparison of methods for various azimuth and phase velocity
estimation techniques was done by Kvaerna and Ringdal (1986) and Kvaerna
(1987) with data from the NORESS array. They concluded that conventional
f,k processing of vertical data provides more stable estimates than results
obtained by similar processing of three-component data. Their final conclusion
was that the broad-band fk estimation approach clearly provides the most
stable estimates of azimuth and apparent velocities. In our own investigations

we did not achieve a significant improvement using the high resolution fk tech-
nique (Capon, 1973).

In this study, the f,k power spectrum was calculated for time-windows of 1
second duration moving along the whole recorded event or the synthetic data.
Consecutive time-windows were allowed to overlap by 0.5 seconds. Within
each time-window the maximum of this function defines phase-velocity and
azimuth of the wavegroup, which propagates across the array. These values
were associated with the respective time-window. In addition to azimuth and
phase velocity, a quality value was calculated which reflects the signal coher-
ence inside each time-window. This quality value ranges from 0 to 1.

The investigations described below have been limited to the frequency band
from 0.8 Hz to 4 Hz because of the good signal to noise ratio in this passband.

7.2 INVESTIGATION OF GERESS DATA

Two events with almost equal distance, but different azimuths have been
selected for velocity and azimuth analyzes (table 7.1 and figure 7.2).

The first event is a recording of a quarry blast from the Vogtland area in the
north-eastern part of CSFR. This area is well known for many small earth-
quakes and extensive quarry blast activities. During a test from 26.11.90 to
2.12.90 (phase 3 of GSETT 2), 12 events could be detected and loceted in this
region (figure 7.3). At 3 of the 7 days of the test, no events could be detected

80




from this area. The second event is a small earthquake from the Alps near the
village of Kitzbiihl in Austria.

The filtered seismograms (0.8 - 4.0 Hz) from the first event are shown in figure
7.4. The spectra for the iwo time-windows containing P and S energy and a
third time-window with noise preceding the first onset (figure 7.5) show the
best signal to noise ratio in the frequency band from 1.5 to 4.0 Hz. The dom-
inant noise maximum at 4 - 5 Hz is supposed to originate from a saw mill at a
distance of a few kilometers from the GERESS array. The spectra of P and S
surpass the noise level up to 30 Hz and 20 Hz, respectively. The high fre-
quency element at C2, sampled at 120 Hz, was used for calculating the power
spectra.

Amplitudes of Pg-impulse vary greatly between different array stations. Some
stations show a simple strong Pg impulse (e. g. station D8), but for other sta-
tions, the onset is hardly visible (D4). Lg/Pg amplitude ratios for different array
stations vary between 0.9 to 5.8 for the 0.8 - 4.0 Hz bandpass and between 0.9
- 6.1 for the unfiltered seismograms. This may be due to different coupling of
the seismometers to the solid underground as well as to inhomogeneties along
the whole propagation path and undemeath the seismometer location. Contrary
to Pg, the Pn onset is visible without additional filtering for a few stations only
(e. g. Al, C1 and C2).

The results of the fk analysis for this first event are displayed in figure 7.6.
Marked onsets and phases are the results of standard interpretation. Azimuth
values for the individual time-windows scatter within a range of + 15° around
the mean value of 331°. The calculated mean value has been found to be very
stable, generally deviating no more than 1 - 2° from the theoretical azimuth.
Azimuth deviations could have the following reasons:

- General heterogeneities exists along the travel path and underneath the array,
reducing the signal coherence and producing travel-time residues between
the stations of the array.

- Each time-window contains a superposition of wavegroups with different
phase velocities, which cannot be resolved because in each time-window
only the maximum of the fk power spectrum is considered. This is even

true for the synthetic seismograms where azimuth variations are substantially
smaller, however.

- Large-scale structures along the travel path reflect the waves laterally.
Thereby producing alternative ray paths giving rise to real azimuth




variations.

- Coherent noise contributes to these variations.

As described in section one, the effect due to coherent noise cannot be large
enough to explain the observed azimuth variations completely, because only a
few seismometer distances are smaller than the coherence length. The fk
analysis of synthetic signals calculated for a station distribution identical to the
GERESS array confirmed these results. Heterogeneities below the array appear
to be the most probable reason for the azimuth variations, since they also can
explain the observed Pg amplitude variations.

The observed variations of the velocities between the individual time- windows
seem to be smaller. A clear velocity decrease is visible across the Pg coda and
the Lg wave-train. Additional to this general trend, coherent energy with higher
velocity can be seen inside the Pg coda. Tis could be attributed to onsets from
waves reflected between surface and Moho at angles less then the critical angle.
Before including these phases in the interpretation of crustal structure, the
azimuth variations must be explained and their possible effects on the associ-
ated velocities must be estimated.

The onset of the Sn phase is characterized by a step in velocity to 4.5 km/sec
(figure 7.6). The phase velocity of the following Sg phase is smaller than 4.0
km/sec. The derived velocities of Pn and Pg are 7.7 km/sec and 7.1 km/sec
respectively.

The interpretation of the refraction seisruic measurement by Miller and
Gebrande (1976) for the international profile VII, which crosses the GERESS
location from SW to NE, showed P-velocites of about 8.2 km/sec below the
Moho. P wave velocity corresponds to an S-velocity of 4.7 km/sec assuming a
fixed v, to \A ratio of V3. This S-velocity would be slightly higher than the
phase velocxty of 4.5 km/sec derived from the fk analyses for the Sn phase.

The single £k analysis of the time-window including the Pn phase and the
corresponding beam are plotted in figure 7.7. The time function of the Pg
impulse matches a 2nd order Kiipper impuise in the first approximation,
whereas the time function of the Pn-onset resembles more closely a 1st order
Kiipper impulse. If Pg is a diving wave, the Pg impulse would be proportional
to the source function. With this assumption, Pn is a classical head wave with a
time function like the integrated source function. The calculated Pn velocity of
about 7.7 km/sec would be significantly smaller in this case than the expected
velocity of 8.2 km/sec. On the other hand, this velocity would be consistent
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with the Sn velocity of 4.5 km/sec by a fixed ratio of V3. Assuming Pg to be a
refracted wave, the difference between the impulse of Pn and Pg cannot be
explained.

The seismograms of the second event of 30.11.90 are plotted in figure 7.8.
They were filtered from 0.8 to 4.0 Hz. The results of fk analysis are shown in
figure 7.9. The Pg wave-train is more complek than the one for the first event.
The variations for the Lg/Pg amplitude ratio described above cannot be
observed for this event,

The calculated azimuth values for the individual time-windows vary over a
range of £15° around the mean value of 206° as observed for the first event.
Deviations are, however, significantly smaller for the first 5 seconds after the
beginning of the Pg wave-train. This indicates that influence of scattered energy
increases in the course of the coda.

In contrast to the first event, no general increase in velocity along the Pg coda
is observed, moreover, single bursts of coherent energy with increasing velocity
towards the end of the Pg coda are significant. For the Lg wave-train, no
definite velocity trend can be recognized.

The phase velocity of about 7.5 km/sec for the Pn phase could only be calcu-
lated by a time-window with individual length and a special frequency band
because this phase is hardly visible. Onsets of Sn and Sg are not as clearly
defined as the ones for the first event. The calculated velocities are 4.9 km/sec
and 4.0 km/sec for the Sn and Sg phase, respectively.

7.3 ANALYSIS OF SYNTHETIC DATA

Synthetic seismograms were calculated with the reflectivity method for the sta-
tion distribution of the GERESS array, disregarding differences in elevation.
The model used is given in figure 7.10 (Campillo et al., 1984). The S velocity
is derived from P velocities with the assumption of a fixed ratio of V3. The
density is given by the Nafe-Drake relation (Talwani et al, 1950). An explo-
sion source is used, which lies inside the first layer in the depth of 500 m. The
time dependence of the source is given by a 2nd order Kiipper impulse with a
dominant period of 0.25 seconds. The distance between source and central sta-
tion C2 is 150 km.
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The unfiltered seismograms, convolved with the GS-13 characteristic are plotted
in figure 7.12. The dominant onset in the seismograms are Rayleigh waves with
a clear onset of that part of the surface waves, which can be described by the
inverse part of the dispersion relation. After filtering the seismograms with a
pass-band of 1 to 6 Hz (figure 7.13), the part of the surface waves with regular
dispersion is no longer visible. The selected time-window of 1 second length
for the fk analysis would be to small for these waves. The amplitude spectrum
of the seismogram of C2 is shown in figure 7.11. The frequency band selected
for the f,k analysis extends from 1 to 6 Hz.

The variations in azimuth are about 0.5° around the theoretical value of 360°
(figure 7.14). They must be due o superposition of coherent signals with
different phase velocities inside the individual time-window and to the finite
resolution in the wavenumber domain, since the fk analysis technique was
applied to synthetic seismograms without noise. The numbered onsets in figure
7.14 correspond to visible onsets in the seismograms.

Although the model is simple, the phase velocites cannot be completely
explained by the theoretical travel-times because of their complexity. P wave
travel-time curves are plotted in figure 7.15 for the direct wave, under- and
overcritically reflected waves for each discontinuity, the corresponding head
waves, as well as that waves which are reflected one and two times at the sur-
face. The seismograms in figure 7.12 and 7.13 are shifted by 20 seconds com-
pared to the travel-times in figure 7.15.

The first onset (1) will be generated by the head wave from the lowest discon-
tinuity with a velocity of 8.2 km/sec. The calculated phase velocity is correct
for the corresponding time-window, although the weaker head wave from the
first discontinuity with a velocity of 4.5 km/sec, as well as the surface
reflections not included in figure 7.15, arrive within the same time-window.
The following dominant P wave-train will be generated by many onsets, as
seen in figure 7.15 with velocities in the range from 6.0 km/sec to 6.7 km/sec.
An example is the reflected wave from the lowest discontinuity with a phase
velocity of 6.7 km/sec. The phase velocity, calculated with the f,k power spec-
trum for this time-window is about 6.6 km/sec. The onset (3) (figure 7.14),
characterized by the increasing phase velocity from 6.4 km/sec to 8.1 km/sec is
well recognizable in the seismograms. The arrival of the wave P41, (reflected
between surface and lowest discontinuity) and the wave P ’ (reflected twice
between surface and second discontinuity) (figure 7.15) with phase velocity
between 8.2 km/sec and 7.0 km/sec respectively contribute among others to this
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onset. In contrast to the real data, the velocity is significantly higher after this
onset.

The arrival of the S waves (5, 6), characterized by a step in phase velocity to
4.5 km/sec, was not analyzed in detail using travel-times. Because the explo-
sion source generates only P waves only, these arrivals must be P-SV-converted
phases.

7.4 CONCLUSIONS

It was shown for the two events analyzed, that phase velocities are different for
the whole Pg coda and along the Lg wave-train. Future analysis of more even..
will be necessary to establish an azimuth-dependent trend and allow interpreta-
tion in terms of azimuth-dependent crustal models. Further investigations must
explain azimuth scattering and the possible inaccuracy of the phase velocity
determination. This concerns interpretation of the well-known phases recorded
at regional distances like Pn, Pg, Sn, Sg and Lg but effects even stronger the
interpretation of high velocity onsets inside the Pg coda. If heterogeneities lead
to the azimuth variations, they offer the possibility to judge on models for
describing these heterogeneities. The calculated mean azimuth seems to be a
stable value especially for weak events. The velocity undemeath the Moho

deduced from Pn and Sn velocities seems to be smaller than expected from
other investigations.

Analysis of the synthetic data showed, that visible onsets in the seismograms
are always composed of pulses of coherent energy with different phase velo-
city. This inaccuracy, however, is an order of magnitude below the azimuth
variations observed in natural events and thus cannot be used in their explana-
tion.

Nicolai Gestermann
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date first arrival origin time A back-az. coordinates magnitude
[km]  [deg] m
1. 150191 11:03:589Pn 11:03:294 176 331 S0.22N 12.51E 1.7
2. 30.1190 15:44:265Pn  15:43:520 172 206 47.46N 12.65E 19

Table 7.1  List of events used for the f,k-analysis. The data refer to the central sta-

tion GEC2.
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Figure 7.13  Synthetic seismograms (vertical component) of figure 7.12, filtered
with a bandpass from 1 - 6 Hz.
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